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Abstract

This paper presents a preliminary study on the use of the
Factor Analysis (FA) methods in an automatic speaker
diarization process, dedicated to the meeting rooms. In-
deed, the speaker diarization process, based on the top-
down E-HMM approach, integrates a FA-based speaker
modeling in an additional resegmentation step, which
aims at helping the refinement of the output segmenta-
tion. Classically applied in speaker recognition to deal
with channel variability issues, two main schemes of the
FA application are proposed here: to deal with the (1)
inter-speaker variability and with (2) the inter-segment
variability. Different kinds of experiments have been
conducted on the dataset of the last NIST/RT’09 evalu-
ation campaign, leading to very interesting and promis-
ing results. For instance, they show that the couple of
schemes proposed in this paper obtained competitive per-
formance, compared to the baseline process, despite the
small amount of development data used in this paper for
the FA parameter estimation. Unexpectedly, they tend to
show that the inter-segment variability component can be
helpful for speaker diarization.

1. Introduction
The speaker diarization task, also known as ”Who spoke
when” consists in determining the speaker turns automat-
ically in an audio document and grouping together the
speech segments belonging to the same speaker [1]. This
task is required in a more overall process, called Rich
Transcription (RT), aiming at providing different kinds
of labels (types of acoustic environment, speaker gender,
speaker turns, spoken terms, named entities, etc), used af-
terwards for indexing purposes of audio documents.
For the last ten years, the speaker diarization task has
been involved in various domains, such as telephone con-
versations, broadcast news, and more recently meetings,
mainly driven by the international RT evaluation cam-
paigns organized by the National Institute of Standards
and Technology (NIST). If each domain has its own char-
acteristics, they can present a large variability over au-
dio documents as well as inside a same document, hardly
managed by automatic systems.

In other fields of the automatic speech processing, fac-
tor analysis (FA) methods have demonstrated their relia-
bility in dealing with variability issues. They have been
firstly applied successfully in speaker recognition, reach-
ing very large performance improvement on telephone
data [2, 3, 4]. Then, they have been involved in other
fields like for instance language recognition [5, 6] or
video gender detection [7]. More recently, some attempts
to exploit the effectiveness of the FA approaches in the
speaker diarization field have been proposed [8]. Mostly,
these studies are focused on the use of speaker factors to
enhance the robustness of the speaker models involved
in the speaker diarization process. As opposed to the
previous studies on FA (especially in speaker recogni-
tion), channel factors are not involved to deal with the
inter-session variability. Moreover, in [8], FA-based ap-
proaches are applied in the specific context of telephone
conversations (2 speaker conversations), issued from the
NIST/SRE evaluation campaign of the speaker recogni-
tion systems for which large corpora are available as rec-
ommended for the FA implementation.
In this paper, the authors propose to investigate the use
of the FA-based approaches for the speaker diarization
task in the meeting context (multiple speaker conversa-
tions). Here, a top-down speaker diarization approach,
based on the E-HMM scheme [9], is used jointly with
FA-based approaches to enhance speaker model quality.
Different approaches, involving speaker factors only and
both speaker and channel factors are evaluated through
meeting data issued from the last NIST/RT evaluation
campaign [10]. These approaches aim at modeling two
main kinds of variability: (1) the inter-speaker variability
inside a meeting show, and (2) the inter-segment variabil-
ity for a same speaker inside a show.
In this context, the paper is organized as follows: sec-
tion 2 gives a description of the top-down approach-based
system, used in this paper. Section 3 presents the basis of
the FA. After detailing the experimental protocol used in
this paper, the joint use of the top-down and the FA ap-
proaches is described in sections 5 and 6, coupled with
the results obtained for each case. Finally, a discussion
followed by some perspectives are proposed in section 7.

Odyssey 2010
The Speaker and Language Recognition Workshop
28 June – 1 July 2010, Brno, Czech Republic

131



2. Baseline speaker diarization system
The diarization system employed in this paper is devel-
oped using the open source ALIZE speaker recognition
toolkit [11]. It involves 3 main steps, in addition to some
preprocessing to accommodate multiple channels:
• a speech activity detection (SAD) process, required to
remove non-speech segments from the speaker diariza-
tion process.
• a speaker segmentation and clustering process to detect
speaker turns and group together speaker homogeneous
segments, and
• a resegmentation process, to refine the output segmen-
tation.

2.1. Multi-channel handling

The speaker diarization task involved in this paper relates
to multiple distant microphones located on meeting room
tables (MDM task of the NIST/RT evaluation plan [10]).
To deal with this task, a single virtual channel is formed
using the BeamformIt 2.0 toolkit1 with a 500 ms analysis
window and a 250 ms frame rate.

2.2. Speech Activity Detection

The Speech Activity Detection (SAD) algorithm employs
feature vectors composed of 12 un-normalized Linear
Frequency Cepstrum Coefficients (LFCCs) plus energy
augmented by their first and second derivatives. It utilises
an iterative process, coupling both a Viterbi decoding and
a model adaptation scheme applied to a two-state HMM.
States represent speech and non-speech events and each
one is associated with a 32-component Gaussian Mixture
Model (GMM), trained on separate data using an EM/ML
algorithm. State transition probabilities are fixed to 0.5.
Finally, duration based-rules are applied in order to re-
fine the speech/non-speech segmentation yielded by the
iterative process.

2.3. Speaker segmentation and clustering

This step is the core of the LIA speaker diarization sys-
tem. It relies on a one-step segmentation and clustering
algorithm, following a top-down scheme in the form of
an Evolutive Hidden Markov Model (E-HMM) [9]. Each
E-HMM state aims at characterizing a single speaker and
the transitions represent the speaker turns. Here the signal
is characterized by 20 LFCCs, computed every 10 ms us-
ing a 20 ms window. The cepstral features are augmented
by energy and no feature normalization is applied.
As detailed in [12], the segmentation process begins by
initializing the E-HMM with only one state (denoted L0)
representing the entire audio show. An iterative process is
then started where a new speaker/state is added to the E-
HMM at each iteration. Successive Viterbi decoding and

1Available at: http://www.icsi.berkeley.edu/xanguera/beamformit

speaker model training loops attribute speech segments to
the different speakers involved in the E-HMM. This itera-
tive process is performed until a stop criterion is reached,
which is based on the ability, or not, for a new speaker to
be added to the E-HMM.
At each iteration, a new speaker is added and associated
with the longest segment selected among those assigned
to L0 speaker and considered as unlabelled yet. The se-
lection of this segment is constrained by a minimum 6s
duration. If no segment belonging to L0 responds to this
criterion, the iterative process is stopped.
The speaker modelling involved in the iterative process
is based on Gaussian Mixture Models (GMM), estimated
through the EM/ML (Expectation - Maximization / Max-
imum Likelihood) algorithm. GMM models associated
with each HMM state are composed of 16 Gaussian com-
ponents (with diagonal covariance matrix) except for the
last speaker added, for which only 8 Gaussian com-
ponents are estimated. This difference in the number
of Gaussian components aims at balancing the assumed
small amount of data attributed to the last speaker com-
pared with the others.

2.4. Resegmentation steps

The speaker segmentation and clustering process is fol-
lowed by a couple of resegmentation steps, used to re-
fine the segmentation outputs. For each of them, an
HMM is generated from the previous stage outputs (and
set of speakers associated with) and an iterative speaker
model training/Viterbi decoding loop is launched. For
this iterative process, all the boundaries (except those of
speech/non-speech segments) as well as the segment la-
bels are re-examined. Moreover, a speaker/state can be
deleted after an iteration if it does not attract enough
speech segments (less than 8 seconds). In contrast to
the segmentation and clustering stage, here a Maximum
A Posteriori (MAP) [13] based-adaptation (coupled with
a Universal Background Model (UBM)) replaces the
EM/ML algorithm for speaker model estimation since
the segmentation step provides an initial distribution of
speech segments among the set of speakers detected.
If the first resegmentation step relies on the same features
as the segmentation and clustering process (20LFCC plus
energy without any feature normalization), the second re-
segmentation step employs 16LFCCs, energy, and their
first derivatives, extracted every 10 ms using a 20ms win-
dow, making up a feature vector of 34 coefficients. As
opposed to the previous steps, the parameter vectors are
normalized, segment-by-segment2, to fit a zero-mean and
unity-variance distribution. This type of parameteriza-
tion, especially the feature normalization, is rather typical
of the speaker recognition domain and may be effective to
correct some minor segmentation errors in a later stage.

2segments are issued from the output segmentation yielded by the
previous step
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3. Factor analysis-based methodology
3.1. GMM-UBM speaker recognition and FA
paradigm

GMM models are linear combinations of Gaussians, gen-
erally used for approximating a complex probability den-
sity function. A GMM is defined by a set of M Gaus-
siansN (.|µg,Σg), along with their associated weights αg

(g ∈ 1, ...,M ):

g=M∑
g=1

αgN (.|µg,Σg). (1)

The GMM-UBM framework is a standard in speaker
verification [14]. It is also used in other audio classifica-
tion tasks, such as language recognition. The UBM, also
called generic or world model, is a GMM that represents
all the possible observations. For each target pattern
(language, speaker,...), a specific GMM is obtained by
adapting the UBM via the MAP criterion [13]. Only
GMM means are adapted, the other GMM parameters
are taken from the UBM without any modification.
For the FA paradigm, we need to define the GMM mean
super-vector concept. A GMM mean super-vector is
defined as the concatenation of the GMM component
means. Let D be the dimension of the feature space,
the dimension of a super-vector mean is M · D, where
M is the number of Gaussians in the GMM. In order
to ease the understanding of the FA development, we
introduce the following matrix notation: let A be a
MD × K matrix formed by concatenating vertically
M matrices of dimension D × K. Let us denote by
{A}[g] the gth matrix in A (usually corresponding to
the g-th component in the model). Let this GMM be
parameterized by θ = {m[g],Σg, αg}M

g=1, where m[g],
Σg , αg are the mean, the covariance matrix and the
weight of the g-th Gaussian in the GMM; m denotes the
mean GMM super-vector, which is the concatenation of
the GMM means m[g]. Σ is the block diagonal matrix
where the g-th diagonal block is Σg .

The term session variability encompasses a number
of phenomena including transmission channel effects,
environment noise (other people, cars, TV, etc.), variable
room acoustics (hall, park, etc.), microphone position
relative to the mouth, and the variability introduced by
the speaker himself/herself. The solutions proposed in
the literature involve work at various levels of the AAP
(feature space, model space and score space). In spite of
the use of sophisticated feature extraction modules, the
session variability introduces a bias in estimated model
parameters. This bias could dramatically influence the
classification performance. This is mainly caused by the
fact that the training databases cannot offer an exhaustive
coverage of all the potential sources of session variability.

In order to take into account the session variability in
the modeling process, the factor analysis model for ses-
sion h belonging to speaker s can be written as:

m(h,s) = m + Dys + Ux(h,s), (2)

where m(h,s) is the session-speaker dependent super-
vector mean, D is a (MD × MD) diagonal matrix, ys,
the speaker vector (a MD vector), U is the session vari-
ability matrix of lower rank R (a MD × R matrix) and
x(h,s) are the channel factors, an R vector (theoretically,
x(h,s) is independent of s). Both, ys and x(h,s) are nor-
mally distributed among N (0, I). D satisfies the equa-
tion I = τDtΣ−1D, where τ is the relevance factor re-
quired in the standard MAP adaptation (DDt represents
the a priori covariance matrix of ys).

3.2. Application of FA in speaker diarization

Given the success met by the use of the FA in the speaker
recognition domain, we were tempted to use it in the
speaker diarization domain. However, the nature of the
session variability problem is not the same in the two do-
mains. In the speaker diarization problem, since we use a
single virtual channel (typically, to deal with the multimi-
crophone context, see section 2.1), we can consider that
the same microphone is used for all speakers and for all
speech segments. In this paper, we will experiment two
main hypotheses:

• Inter-speaker variability: here we assume that
the main speaker information can be located in a
low dimension sub-space, and the rest of speaker
information in the full space. We think that this
speaker modeling manner can be helpful in the case
of small amounts of training data. Indeed, the num-
ber of parameters representing the speaker in the
low dimension sub-space is very small with respect
to the dimension of the full space, which makes
them estimated robustly from small amounts of
data. In this context, the model equation for a given
speaker can be represented as follows:

ms = m + Dy(s,full) + Ux(s,low), (3)

Dy(s,full) is the speaker part in the full space, and
Ux(s,low) is the speaker part related to the low
dimension space. The U matrix is common to
all speakers and is estimated from a development
dataset.

• Inter-segment variability: Here, we assume that
the inter-segment information can be located in a
low dimension sub-space. The FA-based speaker
model can therefore be written as follows:

ms = m + Dys + Ux(s,seg), (4)
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Dys is the speaker part in the full space, and
Ux(s,seg) is the speaker-segment component. The
U matrix is common to all speakers and is esti-
mated from a development dataset.
Regarding the classical FA paradigm, the U ma-
trix estimation (using a development dataset) and
its application during testing phase (using an eval-
uation dataset) have to be performed in the same
experimental conditions to be efficient. Here,
since the U matrix is estimated by using the inter-
segment information, it is difficult to respect this
constraint in this preliminary study since this im-
plies that a speaker model were estimated per seg-
ment. Consequently, it important to note that, in
this paper, all the segments belonging to the same
speaker are merged and considered as a unique
segment utilized for the speaker modeling in the
speaker diarization process (testing phase). The
use of segment-speaker-dependent models (several
models for each speaker) will be studied in future
work.

For both hypotheses, it is worth noting that the FA-
based speaker modeling approaches presented above are
integrated within a third resegmentation process of the
baseline speaker diarization system. This additional pro-
cess follows the same features as the second resegmenta-
tion step described in section 2.4.

4. Experimental protocol
Experiments reported in this paper have been conducted
according to the evaluation plan of the NIST/RT’09 cam-
paign [10], focusing on the Multiple Distant Microphone
(MDM) condition. Seven meeting files are available for
this evaluation, described in table 1 through their orginal
file name, the short name used later in the paper, their
length (in seconds), and the number of speakers involved
in the meeting. Performance of the baseline speaker di-
arization system (described in section 2) is also provided
here. Performance is given in terms of Diarization Error
Rate (DER). These files are used in next sections as the
evaluation dataset permitting comparisons between the
different approaches proposed in this paper.
A second dataset (named development dataset), com-
posed of 23 meeting files issued from the previous RT
evaluation campaigns, is used to estimate the set of pa-
rameters involved in the FA-based system (notably U ma-
trix). The reference segmentations have been used for
this estimation, for which about 100 speakers are present
and about 86% of speech segments are less than 3 second
long (55% between 0 and 1s, 22% between 1 and 2s, and
9% between 2 and 3s).
In this preliminary study, all the parameters of FA-based
systems - rank of the U matrix, number of iterations for
speaker modeling - have been empirically tuned a poste-

riori on the evaluation dataset.

Original Short Length Speaker %DER
name name (in s.) Nb
EDI-2007
1128-1000

EDI-10 1472 4 3,2

EDI-2007
1128-1500

EDI-15 1410 4 33,8

IDI-2009
0128-1600

IDI-16 1708 4 15,0

IDI-2009
0129-1000

IDI-10 1476 5 14,1

NIST-2008
0201-1405

NIS-14 1146 5 47,9

NIST-2008
0227-1501

NIS-15 1091 6 20,4

NIST-2008
0307-0955

NIS-09 1223 7 18,7

Overall Overall 1360 5 18,9

Table 1: Evaluation dataset: Each meeting, used as evalu-
ation dataset in the experiments, is characterized by their
original name, a short name used in the experimental
section, their length (in seconds), the number of speak-
ers present in the meeting, as well as the performance in
terms of %DER obtained by the baseline speaker diariza-
tion system.

5. Inter-speaker variability
This section compares performance obtained by the base-
line system with and without the implication of the
FA based-speaker modeling related to the inter-speaker
variability configuration. The performance comparison,
given in terms of %DER for each meeting files of the
evaluation dataset, is presented in table 2. The second
and the third columns report DER scores of FA-based
systems with and without the implication of the low di-
mension speaker information (Ux(s,low)) in the speaker
modeling process respectively.

Note: The U matrix rank was set to 100. The num-
ber of training iterations for speaker modeling was set to
1. There is a large difference between overall averages of
FA using speaker modeling with and without Ux(s,low)

component. The comparison between results of tables 1,
providing baseline system performance and 2 shows that
the low dimension sub-space contains relevant informa-
tion about the speaker, but not enough to increase per-
formance with respect to the baseline system. Neverthe-
less, this result is rather expected, because the number
of speakers used to train the U matrix is quite small re-
garding the rank of this matrix (100). Indeed, only about
100 speakers are present in the development dataset used
in this paper. Note that the system corresponding to the
third column is like MAP adaptation but applied on data
from which the term Ux is subtracted (at frame level).
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DER (%) of FA-based systems
m + Dy(s,full) + Ux(s,low) m + Dy(s,full)

EDI-10 3.2 39.5
EDI-15 34.6 37.0
IDI-16 14.9 33.9
IDI-10 15.7 16.5
NIS-14 49.4 46.1
NIS-15 16.6 19.5
NIS-09 19.3 18.7
Overall 19.1 29.6

Table 2: Inter-speaker variability: %DER obtained on
the evaluation dataset by FA-based systems using differ-
ent speaker modeling schemes (involving or not Ux(s,low)

component).

6. Inter-segment variability
Three experiments are presented in this section. The
first one aims at measuring the impact of the FA-based
speaker modeling related to the inter-segment variabil-
ity. Two kinds of results are presented with (m + Dys +
Ux(s,seg)) and without (m+Dys) using the inter-segment
component. In the later case, the inter-segment compo-
nent (Ux(s,seg)) is firstly estimated and discarded.

The second experiment presents results of FA-based
systems using some constraints in channel matrix estima-
tion (short segment filtering). The last experiment shows
results of FA-based systems, when a standard (no FA) re-
segmentation step is applied after the FA based-process.

6.1. Implication of the inter-segment component

Results (in terms of %DER) are shown in table 3. The
second and the third columns contain scores of FA-based
systems involving or not the inter-segment component
(Ux(s,seg)).

Note: The U matrix was estimated only on segments
equal or longer than 1 second and the matrix rank was
set to 10. The number of training iterations for speaker
modeling was set to 1.

As opposed to the previous section, there is not a large
difference between overall averages. The inter-segment
component seems to contain some information, but its in-
fluence in the speaker diarization process is not as large
as the one observed in the approach tested in the previ-
ous section (Inter-speaker variability). Indeed, %DER are
rather variable between meeting files, regarding the dif-
ferent speaker modeling schemes. Especially, the slight
increase of the overall %DER in the third column is
mainly due to the EDI-20071128-1500 meeting file for
which the %DER augments drastically (from 33.8% for
the baseline to 47.0% for the FA: m+Dys configuration)
when the inter-segment component is not involved while
stable or decreasing %DER can be observed for the other
meeting files. Conversely, regarding now the use of the

DER (%) of FA-based systems
m + Dys + Ux(s,seg) m + Dys

EDI-10 3.1 3.2
EDI-15 34.3 47.0
IDI-16 14.6 12.3
IDI-10 15.6 14.0
NIS-14 49.4 42.0
NIS-15 13.0 19.0
NIS-09 19.1 18.1
Overall 18.5 19.3

Table 3: Inter-segment variability: %DER obtained on
the evaluation dataset by FA-based systems using differ-
ent speaker modeling schemes (involving or not Ux(s,seg)

component).

inter-segment component (second column), the decrease
of the overall %DER is mainly due to the significant gain
observed on the NIST-20080227-1501 meeting file.

6.2. Experiment with segment filtering for U matrix
estimation

The basic idea of this experiment is to remove very short
segments (hundreds of milliseconds) which could be dis-
turbing for the U matrix estimation involved in the inter-
segment component. In other words, the U matrices, in-
volved in this section, differ in the minimal segment du-
ration used in their estimation process. Table 4 reports
DER scores of FA-based systems, for which U matrices
have been estimated either on all the segments available,
or on segments equal to or longer than 1, 2, 5, or 10 sec-
onds.

Note: Speaker modeling is based on the m + Dys +
Ux(s,seg) scheme. The U matrix rank was set to 10. The
number of training iterations for speaker modeling was
set to 43. In these results, we can observed an interest-
ing difference between the overall DER average of the
FA-based system combined with U matrix estimated on
all the segments available and the system using U ma-
trix estimated on segments equal to or longer than 1 sec-
ond. Indeed, the later outperforms the first system and
exhibits the lower DER compared with the other sys-
tems (2, 5, and 10 second long segments). This be-
haviour is mainly due to the significant gain observed
on the NIST-20080227-1501 meeting file where the DER
declines from 16.7% (with all the segments available) to
4.9%, which represents also a 15.5% absolute gain com-
pared to the baseline system (without FA). Regarding the
other meeting files, quite stable performance is observed
in this configuration.

3This change in the number of iterations, compared to the previ-
ous sections, is induced by some tuning experiments, not reported here,
showing best a posteriori performance on the evaluation dataset for this
figure.
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DER (%) per min. segment duration
0 s 1 s 2 s 5 s 10 s

EDI-10 3.2 3.1 3.1 3.0 3.0
EDI-15 34.5 34.3 34.3 34.2 34.0
IDI-16 14.8 14.6 14.6 14.7 14.6
IDI-10 15.8 15.6 15.7 15.6 15.8
NIS-14 49.4 49.2 49.4 49.3 48.9
NIS-15 16.7 04.9 15.0 18.6 19.2
NIS-09 19.2 19.1 19.2 19.2 18.9
Overall 19.1 17.7 18.8 19.1 19.1

Table 4: Inter-segment variability: %DER obtained by
FA-based systems using different U matrices. Difference
appears in the minimum duration of segments used for
the matrix estimation process.

6.3. Combination of FA with resegmentation step

The FA-based system providing new segmentation out-
puts, it would be interesting to observe the behaviour of
an additional resegmentation step as used in the base-
line system. The hypothesis is that the segmentation out-
put altered by the FA-based resegmentation process can
be potentially enhanced by a new step of resegmentation
without FA.

Note: Speaker modeling is based on the m + Dys +
Ux(s,seg) scheme. The U matrix rank was set to 10. The
number of training iterations for speaker modeling was
set to 4. Segments equal or longer than 1s are used only
for the U matrix estimate. Results, presented in table 5,

DER (%)
FA FA + Resegmentation

EDI-10 3.1 3.3
EDI-15 34.3 34.8
IDI-16 14.6 14.6
IDI-10 15.6 15.1
NIS-14 49.2 47.3
NIS-15 4.9 3.5
NIS-09 19.1 18.8
Overall 17.7 17.3

Table 5: Inter-segment variability: %DER without and
with the use of a basic resegmentation (without FA) step
after applying FA-based process.

shows, as expected, a slight improvement of the overall
DER scores after applying a successive resegmentation
step. Notably, a further gain can be observed on the NIST-
20080227-1501 meeting file for instance.

7. Discussion
The Factor analysis is an interesting approach allowing
robust estimation of certain parameters for which a
small amount of data is available. The basic idea is

to decompose such parameters into 2 parts: the first
one (U) containing a large amount of parameters and
can be estimated on a large amount of development
data, and the second part (x) contains small number
of parameters and can be estimated on test data itself.
In this paper we have tried to apply this paradigm
to the following types of information: speaker and
segment. For the speaker component, we need to
use a large amount of speakers in the development
dataset. Regrettably, it was not the case currently, since
only 100 speakers are available in the development
dataset used, while we need more than a thousand. In
spite of that, we have shown that the low dimension
sub-space contains a lot of information about the speaker.

For the segment information, we have shown that
this component contains some information about the
speaker. Perhaps, some of this information does not
concern the intrinsic characteristics of the voice speaker,
but concerns his or her mouth position with respect to
the microphones. For most of the meeting files used in
the evaluation dataset, the gain obtained by modeling the
segment component was small, except for the meeting
file named NIST-20080227-1501, for which the gain
was very impressive: 76% relative gain. Obviously,
our future work will be focused now on finding some
explanation for this phenomenon: why the modeling of
the inter-segment variability with FA has shown very
good performance for only one file among the 7 files
used ? Moreover, as said in section 6, we will also study
the possibility of using segment-speaker-dependent
models. Indeed, the speaker model containing two
components - one is common to all speaker segments
and the other is specific to each segment - it will be
more natural (regarding the FA paradigm) to handle a
set of segment-speaker-dependent models rather than a
single speaker model (as done in this paper). Obviously,
it will be considered the possibility that a set of close
segments can share the same segment-speaker-dependent
component.

In the case of segment component modeling with FA,
the additional application of the re-segmentation using
the original strategy, i.e. the standard MAP adaptation,
gives a supplementary gain. Before the segment compo-
nent modeling, the Viterbi segmentation based on MAP
modeling met a local maximum which can be left to
go toward a better solution thanks to FA-based speaker
modeling.

It is important to note that the FA analysis have met
large success when coping with channel variability. We
know also that, in speaker diarization tasks applied to
meeting rooms, several microphones may be generally
available, leading to several speaker recordings for the
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same speech production. Consequently, instead of using
a single virtual channel (formed using the BeamformIt),
the FA could be used to model the differences between
these recordings, hence all microphones can be used effi-
ciently for training the speaker models. This investigation
will be one of our further work.
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